▎ 摘 要
Copper matrix composites reinforced with carbide-coated graphene nanoplatelets (GNPs) were investigated in order to understand the role of the interlayers on the thermal, electrical, mechanical and electro-tribological properties of the composites. The TiC or VC coatings were formed in situ on the two sides of GNPs through a controllable reaction in molten salts. Compared with bare GNPs composites, the bonding between the GNPs and copper was improved. Accordingly, the tensile strength and the fracture elongation of Cu/GNPs composites with an interlayer were enhanced by strengthened interfacial bonding. Furthermore, the wear resistance of Cu/GNPs composites was remarkably improved.