• 文献标题:   Broad Electrical Tuning of Graphene-Loaded Plasmonic Antennas
  • 文献类型:   Article
  • 作  者:   YAO Y, KATS MA, GENEVET P, YU NF, SONG Y, KONG J, CAPASSO F
  • 作者关键词:   reconfigurable antenna, active plasmonic, graphene, nanocircuit loading, antenna array, optical modulator, midinfrared
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Pierce 205A
  • 被引频次:   334
  • DOI:   10.1021/nl3047943
  • 出版年:   2013

▎ 摘  要

Plasmonic antennas enable the conversion of light from free space into subwavelength volumes and vice versa, which facilitates the manipulation of light at the nanoscale. Dynamic control of the properties of antennas is desirable for many applications, including biochemical sensors, reconfigurable meta-surfaces and compact optoelectronic devices. The combination of metallic structures and graphene, which has gate-voltage dependent optical properties, is emerging as a possible platform for electrically controlled plasmonic devices. In this paper, we demonstrate in situ control of antennas using graphene as an electrically tunable load in the nanoscale antenna gap. In our experiments, we demonstrate electrical tuning of graphene-loaded antennas over a broad wavelength range of 650 nm (similar to 140 cm(-1), similar to 10% of the resonance frequency) in the mid infrared (MIR) region. We propose an equivalent circuit model to quantitatively analyze the tuning behavior of graphene-loaded antenna pairs and derive an analytical expression for the tuning range of resonant wavelength. In a separate experiment, we used doubly resonant antenna arrays to achieve MIR optical intensity modulation with maximum modulation depth of more than 30% and bandwidth of 600 nm (similar to 100 cm(-1), 8% of the resonance frequency). This study shows that combining graphene with metallic nanostructures provides a route to electrically tunable optical and optoelectronic devices.