▎ 摘 要
An anisotropic hybrid implicit-explicit finite-difference time-domain scheme is developed to investigate the magnetically biased graphene absorber. The anisotropic conductivity of the graphene is incorporated into the scheme by using the auxiliary difference equations. Numerical examples show that the presented scheme has much higher simulation velocity than the conventional finite-difference time-domain scheme, because the time increment in proposed method is not confined by the fine meshes in graphene sheet. Besides, the results validate that, by controlling the biased magnetic field, the graphene exhibits tunable polarization rotation property at Terahertz spectra and can be used to design magnetically tunable Terahertz absorber effectively.