• 文献标题:   Confining graphene plasmons to the ultimate limit
  • 文献类型:   Article
  • 作  者:   PRINCIPI A, VAN LOON E, POLINI M, KATSNELSON MI
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   Univ Manchester
  • 被引频次:   3
  • DOI:   10.1103/PhysRevB.98.035427
  • 出版年:   2018

▎ 摘  要

Graphene plasmons have recently attracted a great deal of attention because of their tunability, long lifetime, and high degree of field confinement in the vertical direction. Nearby metal gates have been shown to modify the graphene plasmon dispersion and further confine their electric field. We study the plasmons of a graphene sheet deposited on a metal, in the regime in which metal bands do not hybridize with massless Dirac fermion bands. We derive exact results for the dispersion and lifetime of the plasmons of such a hybrid system, taking into account metal nonlocalities. The graphene plasmon dispersion is found to be acoustic and pushed down in energy toward the upper boundary of the intraband graphene particle-hole continuum, thereby strongly enhancing the vertical confinement of these excitations. Landau damping of such acoustic plasmons due to particle-hole excitations in the metal gate is found to be surprisingly weak, with quality factors exceeding Q = 10(2).