▎ 摘 要
Recycling rare earth elements (REEs) from sources of secondary waste such as REEs mine wastewater has emerged as a sustainable approach with both waste reuse and wastewater processing. In this study, green reduced graphene oxide (G-rGO) was prepared utilizing green tea extract with the advantages of being environmentally friendly, sustainable, and low cost. To understand how G-rGO functions, it was com-pared to commercial reduced graphene oxide (rGO), and the efficiencies in adsorbing Y(III) were 91.6% and 11.9%, respectively. This indicated there is a synergistic adsorption between the capping layer of G-rGO and rGO alone. G-rGO and rGO were characterized before and after exposure to Y(III). This com-parison indicated that Y(III) was adsorbed on the surface of G-rGO through complexation and electro-static interaction. The adsorption kinetics best fit the pseudo-second-order model and the Langmuir model isotherm model, with adsorption capacities of 24.54 mg g-1. A probable adsorption mechanism of Y(III) by G-rGO was proposed, involving electronic complexation, electrostatic adsorption and ion exchange. Furthermore, the adsorption efficiencies of G-rGO for Y(III), Ce(III) and Zn(II) in mine wastew-ater were 22.1%, 89.1% and 14.6%, respectively. These results demonstrate that G-rGO has great potential in the recovery of REEs from mine wastewater.(c) 2023 Elsevier Inc. All rights reserved.