▎ 摘 要
Carbon nanotubes (CNTs) and graphene (GNS) hybrid multiple-thread yarns were fabricated by chemical vapor deposition followed by a posted-stretching processing. The as-prepared CNTs and GNS multiple-thread yarns consisted of tens of single-thread fibers with diameters of around 20 mu m. The single-thread fibers are composed of double-walled carbon nanotube (DWNT) bundles and GNS tablets. DWNT bundles in the single-thread fiber are highly disordered and are rounded by GNS. The content and dimensions of GNS are changeable along the fiber axial direction. The as-obtained CNT and GNS hybrid multiple-thread yarns can be twisted, forming one fiber. The mechanical measurement of the twisted yarn gave a strength of 300 MPa and the electrical conductivity is 10(5) S m(-1). These unique structures, possessing various promising properties, can be readily and directly applied in different fields. Here, the hybrid yarns of CNTs and GNS were applied as a lamp thread and woven macroscopic body, as demonstrated.