• 文献标题:   Nano-graphene oxide-manganese dioxide nanocomposites for overcoming tumor hypoxia and enhancing cancer radioisotope therapy
  • 文献类型:   Article
  • 作  者:   TAO YG, ZHU LL, ZHAO YY, YI X, ZHU LB, GE F, MOU XZ, CHEN L, SUN L, YANG K
  • 作者关键词:  
  • 出版物名称:   NANOSCALE
  • ISSN:   2040-3364 EI 2040-3372
  • 通讯作者地址:   Soochow Univ
  • 被引频次:   13
  • DOI:   10.1039/c7nr08747k
  • 出版年:   2018

▎ 摘  要

While radiotherapy (RT) is commonly used in clinics for cancer treatment, the therapeutic efficiency is not satisfactory owing to the existence of the hypoxic tumor microenvironment which seriously affects the efficiency of RT. Herein, we design polyethylene glycol (PEG)-modified reduced nano-graphene oxide manganese dioxide (rGO-MnO2-PEG) nanocomposites to trigger oxygen generation from H2O2 to reduce the tumor hypoxic microenvironments. We use the radioisotope, I-131 labeled rGO-MnO2-PEG nanocomposites as therapeutic agents for in vivo tumor radioisotope therapy (RIT), achieving excellent tumor killing and further enhancing the therapeutic efficiency of RIT. More importantly, the dissolution of MnO2 under acidic conditions and the redox process during the catalytic pathway of H2O2 decomposition in the cellular microenvironment direct to the production of an enormous amount of Mn2+ which has been used as a contrast agent for magnetic resonance imaging (MRI). Our proposed work provides a strategy to trigger oxygen formation via an internal stimulus to enhance imaging-guided RIT efficiency.