▎ 摘 要
There is growing interest in graphene-reinforced inorganic matrix composites, but progress in this field is far behind that of polymer matrices due to difficulties in the processing of carbon materials in aggressive sintering environments, including oxidation and solubility in the host matrix. Copper-tungsten matrices are of particular interest in the power switching field but are difficult to produce due to the mutual insolubility of metals and poor wetting. Herein, composites were produced by decorating graphene oxide flakes with 8 nm diameter CuWO4 center dot 2H2O nanoparticles and then sintering them to form the final shape. The oxide nanoparticles were found to self-assemble into platelets on the surfaces of graphene flakes. Upon sintering, the presence of graphene was found to change the grain morphology from elongated needles to a polyhedral shape. It was found that, despite the nanosize of the CuWO4 center dot 2H2O particles used, the sintering conditions did not reduce the matrix to a pure metal; the sintered composites were found to be of mixed phase with copper tungstate and copper oxide present. Raman spectroscopy indicated that the graphene oxide became hydrogenated during the sintering process as a result of the reducing hydrogen atmosphere used.