▎ 摘 要
In this study, a novel disposable all-solid-state ion-selective electrode using graphene as the ion-to-electron transducer was developed. The graphene film was prepared on screen-printed electrode directly from the graphene oxide dispersion by a one-step electrodeposition technique. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to demonstrate the large double layer capacitance and fast charge transfer of the graphene film modified electrode. On the basis of these excellent properties, an all-solid-state calcium ion-selective electrode as the model was constructed using the calcium ion-selective membrane and graphene film modified electrode. The mechanism about the graphene promoting the ion-to-electron transformation was investigated in detail. The disposable electrode exhibited a Nernstian slope (29.1 mV/decade), low detection limit (10(-5.8) M), and fast response time (less than 10 s). With the high hydrophobic character of graphene materials, no water film was formed between the ion-selective membrane and the underlying graphene layer. Further studies revealed that the developed electrode was insensitive to light, oxygen, and redox species. The use of the disposable electrode for real sample analysis obtained satisfactory results, which made it a promising alternative in routine sensing applications.