• 文献标题:   Microstructure, mechanical properties and toughening mechanisms of graphene reinforced Al2O3-WC-TiC composite ceramic tool material
  • 文献类型:   Article
  • 作  者:   WANG XC, ZHAO J, CUI EZ, SONG SP, LIU H, SONG WT
  • 作者关键词:   graphene, composite ceramic tool material, microstructure, mechanical propertie, toughening mechanism
  • 出版物名称:   CERAMICS INTERNATIONAL
  • ISSN:   0272-8842 EI 1873-3956
  • 通讯作者地址:   Shandong Univ
  • 被引频次:   9
  • DOI:   10.1016/j.ceramint.2019.02.087
  • 出版年:   2019

▎ 摘  要

The low fracture toughness of Al2O3-based ceramics limited their practical application in cutting tools. In this work, graphene was chosen to reinforce Al2O3-WC-TiC composite ceramic tool materials by hot pressing. Microstructure, mechanical properties and toughening mechanisms of the composite ceramic tool materials were investigated. The results indicated that the more refined and denser composite microstructures were obtained with the introduction of graphene. The optimal flexural strength, Vickers hardness, indentation fracture toughness were 646.31 +/- 20.78 MPa, 24.64 +/- 0.42 GPa, 9.42 +/- 0.40 MPa M-1/2, respectively, at 0.5 vol% of graphene content, which were significantly improved compared to ceramic tool material without graphene. The main toughening mechanisms originated from weak interfaces induced by graphene, and rugged fractured surface, grain refinement, graphene pull-out, crack deflection, crack bridging, micro-crack and surface peeling were responsible for the increase of fracture toughness values.