• 文献标题:   Multifunctional effects of hollow flower-like CoTiO3 microspheres wrapped by reduced graphene as sulfur host in Li-S battery
  • 文献类型:   Article
  • 作  者:   HE XM, LI BJ, LEI ZH, LIU H, WANG SL, QIAO T, FENG YQ, WANG XZ
  • 作者关键词:   cotio3@rgo, multifunctional effect, cycling performance, lis batterie
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:  
  • 被引频次:   2
  • DOI:   10.1016/j.jcis.2022.07.015 EA JUL 2022
  • 出版年:   2022

▎ 摘  要

The poor conductivity of sulfur, the shuttle effect and sluggish redox reaction kinetics of lithium polysulfides (LiPSs) are considered the main obstacles to the practical application of Lithium-sulfur (Li-S) batteries. Thus, it is urgent to design multifunctional host materials to eliminate these obstacles. Herein, we designed a hollow flower-like CoTiO3 wrapped by reduced graphene oxide (h-CoTiO3@rGO) as sulfur host materials. The hollow structure of h-CoTiO3@rGO not only endows sufficient space for high sulfur loading, but also physically and chemically confines the shuttle effect of LiPSs through the formation of Co-S chemical bonding. The large specific surface area and excellent electrocatalytic ability of h-CoTiO3@rGO provide amounts of active sites to accelerate the redox reaction of LiPSs. Meanwhile, the conductive reduced graphene oxide (rGO) covered on the surface of CoTiO3 microspheres offers an interconnected conductive network to support the fast electron/ion transfer. Profit from these merits, the battery employing the multifunctional h-CoTiO3@rGO as sulfur host exhibited excellent cycling stability with an ultralow capacity fading of 0.0127 % per cycle after 500 cycles at 1C. Even the battery with high sulfur loading of 5.2 mg/cm(2) still delivered a high area capacity of 5.02 mAh/cm(2), which was competitive with the commercial Li-ion batteries. Therefore, the competitive capacity and superior cycling stability suggest that the h-CoTiO3@rGO/S cathode is a potential candidate for high-performance Li-S batteries. (C) 2022 Elsevier Inc. All rights reserved.