• 文献标题:   Review of Vertical Graphene and its Applications
  • 文献类型:   Review
  • 作  者:   ZHENG W, ZHAO X, FU WJ
  • 作者关键词:   vertical graphene, carbon nanosheet, carbon nanowall, graphene edge, graphene defect
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   46
  • DOI:   10.1021/acsami.0c19188 EA FEB 2021
  • 出版年:   2021

▎ 摘  要

Vertical graphene (VG) is a thin-film complex material featuring hierarchical microstructures: graphene-containing carbon nanosheets growing vertically on its deposition substrate, few-layer graphene basal layers, and chemically active atomistic defect sites and edges. Thanks to the fundamental characteristics of graphene materials, e.g. excellent electrical conductivity, thermal conductivity, chemical stability, and large specific surface area, VG materials have been successfully implemented into various niche applications which are strongly associated with their unique morphology. The microstructure of VG materials can be tuned by modifying growth methods and the parameters of growth processes. Multiple growth processes have been developed to address faster, safer, and mass production methods of VG materials, as well as accommodating various applications. VG's successful applications include field emission, supercapacitors, fuel cells, batteries, gas sensors, biochemical sensors, electrochemical analysis, strain sensors, wearable electronics, photo trapping, terahertz emission, etc. Research topics on VG have been more diversified in recent years, indicating extensive attention from the research community and great commercial value. In this review article, VG's morphology is briefly reviewed, and then various growth processes are discussed from the perspective of plasma science. After that, the most recent progress in its applications and related sciences and technologies are discussed.