▎ 摘 要
We fabricated the stacked bilayer molybdenum disulfide (MoS2) by using reduced graphene oxide (rGO) as a spacer for increasing the optoelectronic properties of MoS2. The rGO can decrease the interlayer coupling between the stacked bilayer MoS2 and retain the direct band gap property of MoS2. We observed a twofold enhancement of the photoluminescence intensity of the stacked MoS2 bilayer. In the Raman scattering, we observed that the E-2g(1) and A(1g) modes of the stacked bilayer MoS2 with rGO were further shifted compared to monolayer MoS2, which is due to the van der Waals (vdW) interaction and the strain effect between the MoS2 and rGO layers. The findings of this study will expand the applicability of monolayer MoS2 for high-performance optoelectronic devices by enhancing the optical properties using a vdW spacer.