▎ 摘 要
To date, tissue engineering and regenerative medicine have been substantially advanced using bioactive func-tional nanomaterials. Having capitalized on various safe and biocompatible advanced materials, different types of biomimetic scaffolds have been engineered and exploited as an ideal setting for the loading and delivery of the incorporated cells to the damaged/defected tissues. As a carbon-based allotrope with a single layer of atoms, graphene displays a two-dimensional nanoscale honeycomb matrix and provides a great possibility for surface functionalization. Graphene and its derivatives have been used in a wide variety of advanced areas, including pharmaceutical and biomedical applications, in large part due to their extraordinary properties such as outstanding electrical conductivity, high mechanical strength, ease of functionalization, large surface area, and high biocompatibility. Graphene and its polymeric composites have been used for the fabrication of advanced bioactive scaffolds to serve tissue regeneration. The unique features of graphene-polymer composites make them as suitable scaffolds for the delivery of the cells and necessary substances to the damaged tissues, in particular bone, cartilage, and electroactive tissues. In this review, we elaborate on the graphene-incorporated polymeric composite scaffolds and comprehensively discuss their applications.