▎ 摘 要
We report the design of a tunable, narrowband, thermal metasurface that employs a hybrid resonance generated by coupling a tunable permittivity graphene ribbon to a silicon photonic crystal. The gated graphene ribbon array, proximitized to a high quality factor Si photonic crystal supporting a guided mode resonance, exhibits tunable narrowband absorbance lineshapes (Q symbolscript 10,000). Actively tuned Fermi level modulation in graphene with applied gate voltage between high absorptivity and low absorptivity states gives rise to absorbance on/off ratios exceeding 60. We employ coupled-mode theory as a computationally efficient approach to elements of the metasurface design, demonstrating an orders of magnitude speedup over typical finite element computational methods.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement