▎ 摘 要
A bilayer graphene-based electrostatically doped tunnel field-effect transistor (BED-TFET) is proposed. Unlike graphene nanoribbon TFETs in which the edge states deteriorate the OFF-state performance, BED-TFETs operate based on bandgaps induced by vertical electric fields in the source, channel, and drain regions without any chemical doping. The performance of the transistor is evaluated by self-consistent quantum transport simulations. This device has several advantages: 1) ultra-low power (V-DD=0.1V); 2) high performance (I-ON/I-OFF>10(4)); 3) steep subthreshold swing (SS<10mv/dec); and 4) electrically configurable between N-TFET and P-TFET post fabrication. The operation principle of the BED-TFET and its performance sensitivity to the device design parameters are presented.