▎ 摘 要
A Z-scheme I-BiOCl/N-GQD (i.e., nitrogen doped graphene quantum dot) heterojunction was prepared by a one-pot precipitation method at room temperature. The doped iodine decreased the band gap of BiOCl, the introduced N-GQDs enhanced light harvesting and prolonged the photogenerated electron lifetime, and the resultant Z-scheme heterojunction promoted the spatial separation of interfacial charges. Thus, the composite showed high photoelectrochemical activity and a big cathodic photocurrent signal. On the basis of the coordination of chlorpyrifos with surface Bi(III) of the composite, a cathodic photoelectrochemical sensor was constructed for the selective detection of chlorpyrifos. In this case, chlorpyrifos decreased the lifetime of photogenerated electrons, so the photocurrent became small. Furthermore, the photocurrent changed and the logarithm of chlorpyrifos concentration presented a linear relationship. The linear range was 0.3-80 ng mL(-1), and the limit of detection was estimated to be 0.01 ng mL(-1) (defined as S/N = 3). The present strategy can also be used for the design and fabrication of other PEC sensors suitable for different analytes.