▎ 摘 要
Al matrix composites have attracted significant attention of researchers in recent years due to their light-weight, excellent mechanical and tribological properties. In this study, an Al2024 matrix hybrid composite (AMHC) reinforced with both TiC nanoparticles and graphene nanoplatelets (GNPs) was produced via a route of powder metallurgy. And its microstructure, microhardness and tribological properties are compared with those of unreinforced Al2024 alloy matrix and Al2024 matrix composites reinforced with either only TiC or GNPs. It was found that the distribution of Al2Cu, TiC nanoparticles and GNPs in the matrix and the wear resistance are significantly improved when introducing both TiC nanoparticles and the GNPs. The wear mechanisms change from the adhesion-dominant wear for Al2024 and the other singly reinforced composites into abrasive-dominant wear for the hybrid composite. The significantly improved wear resistance of the AMHC is attributed to the synergistic effects of reinforcing and self-lubricating of the TiC and GNPs. (C) 2021 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.