• 文献标题:   Computational study of graphene-based vertical field effect transistor
  • 文献类型:   Article
  • 作  者:   CHEN WC, RINZLER A, GUO J
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF APPLIED PHYSICS
  • ISSN:   0021-8979 EI 1089-7550
  • 通讯作者地址:   Univ Florida
  • 被引频次:   12
  • DOI:   10.1063/1.4794508
  • 出版年:   2013

▎ 摘  要

Poisson and drift-diffusion equations are solved in a three-dimensional device structure to simulate graphene-based vertical field effect transistors (GVFETs). Operation mechanisms of the GVFET with and without punched holes in the graphene source contact are presented and compared. The graphene-channel Schottky barrier can be modulated by gate electric field due to graphene's low density of states. For the graphene contact with punched holes, the contact barrier thinning and lowering around punched hole edge allow orders of magnitude higher tunneling current compared to the region away from the punched hole edge, which is responsible for significant performance improvement as already verified by experiments. Small hole size is preferred due to less electrostatic screening from channel inversion layer, which gives large electric field around the punched hole edge, thus, leading to a thinner and lower barrier. Bilayer and trilayer graphenes as the source contact degrade the performance improvement because stronger electrostatic screening leads to smaller contact barrier lowering and thinning. High punched hole area percentage improves current performance by allowing more gate electric field to modulate the graphene-channel barrier. Low effective mass channel material gives better on-off current ratio. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794508]