▎ 摘 要
Tunable broadband optical field enhancements are demonstrated for graphene-based nanoscale slot waveguides, and the extremely strong field intensity inside the slot region is produced based on the ultrahigh effective mode index. Analytic formulas are obtained to reveal the dependence of enhanced optical fields and effective mode index on the gap distance, the Fermi energy, the width of nanoribbons, and the background medium. We show that most of the optical field is concentrated within the slot regions with the normalized power about up to 86%, and the averaged optical field intensity reaches 10(4) mu m(-2) for the slot waveguide with a 3 nm gap distance and 50 nm width. Meanwhile, the optical field enhancement effect is broadband at infrared frequencies and controlled by Fermi energy via bias electrical voltage for graphene. (C) 2016 Optical Society of America