• 文献标题:   Analytical and Numerical Investigations of Unsteady Graphene Oxide Nanofluid Flow Between Two Parallel Plates
  • 文献类型:   Article
  • 作  者:   MALEKIAN S, FATHI E, MALEKIAN N, MOGHADASI H, MOGHIMI M
  • 作者关键词:   analytical numerical solution, cm, gm, lsm, moving parameter, nanofluid
  • 出版物名称:   INTERNATIONAL JOURNAL OF THERMOPHYSICS
  • ISSN:   0195-928X EI 1572-9567
  • 通讯作者地址:   Iran Univ Sci Technol
  • 被引频次:   2
  • DOI:   10.1007/s10765-018-2422-z
  • 出版年:   2018

▎ 摘  要

In this research, different analytical methods were applied to characterize thermal behavior of unsteady graphene oxide-water nanofluid flow between two parallel moving plates. First of all, partial differential equations (PDEs) were transformed to a system of nonlinear ordinary differential equations (ODEs) using similarity solution. Then, collocation method (CM), least square method (LSM) and Galerkin method (GM) were used to solve the system of ODEs and determine velocity and temperature distribution functions. In addition, effects of moving parameter, concentration, Eckert and Prandtl numbers on nanofluid velocity and temperature profiles were examined. Next, using numerical solution of the obtained system of differential equations, the results obtained from the analytical solutions were validated with that of the numerical solution. The validation results indicated high and appropriate accuracy of the analytical solutions compared to the numerical one.