• 文献标题:   Encapsulation of a Core-Shell Porous Fe3O4@Carbon Material with Reduced Graphene Oxide for Li+ Battery Anodes with Long Cyclability
  • 文献类型:   Article
  • 作  者:   WU QC, YU R, ZHOU ZH, LIU HW, JIANG RL
  • 作者关键词:  
  • 出版物名称:   LANGMUIR
  • ISSN:   0743-7463
  • 通讯作者地址:  
  • 被引频次:   20
  • DOI:   10.1021/acs.langmuir.0c03126 EA JAN 2021
  • 出版年:   2021

▎ 摘  要

Anode materials are critical for energy devices based on Li-ion batteries (LIBs). This work reports on a facile method to produce anodes based on carbon-coated Fe3O4 (CP-Fe3O4) that is encapsulated in reduced graphene oxide (rGO) layers forming a porous core-shell structure Fe3O4@carbon (rGO-CP-Fe3O4). First, Fe3O4 particles were coated with carbon by hydrothermal and carbothermal reduction methods leading to an intermediate product termed CP-Fe3O4. Next, CP-Fe3O4 was encapsulated by two-dimensional layered rGO to obtain CP-Fe3O4 composites with a three-dimensional structure. The Fe3O4 volume expansion during LIB cycling was inhibited by carbon and rGO and a three-dimensional electron transport network was generated by the introduction of rGO. The rGO-CP-Fe3O4 composite showed excellent electrochemical properties (839 mA h g(-1) at 0.3 A g(-1) after 200 cycles) and rate capacities (165 mA h g(-1) at 6.0 A g(-1)). In addition, the rGO-CP-Fe3O4 pseudocapacitance was equal to 65% of the overall capacity at 5 mV s(-1).