▎ 摘 要
In this work, we numerically demonstrate a dynamic graphene-based dual-band metamaterial modulator (gDMM) in the presence of an external magnetic field and gate electric field. With the objective of modulating terahertz waves at two separate channels, we utilize the proposed dual-field control method to dynamically modulate the optical conductivity of graphene, and thus the working frequencies of the gDMM. An interpretation for such dependence on the external fields is presented based on a quantum understanding of the energy structure of graphene, and a numerical method based on the finite element method (FEM) is employed to investigate the optical responses of our proposed gDMM. Our results show that, by varying the strength of external fields, one can switch the operation status of the two working channels located at 3.18 THz and 9.04 THz, with modulation depths exceeding 84.4%. Only 30 meV of energy is required for shifting the Fermi level to accomplish the switch, which is extremely low compared with methods in previous works using gate electric control alone. Simultaneous ON/OFF statuses are also realized. Such great tunability and controllability of our proposed gDMM over a wide frequency range may give rise to a new class of dynamic devices for terahertz and microwave applications.