▎ 摘 要
Graphene is characterized by demonstrated unique properties for potential novel applications in photodetection operated in the frequency range from ultraviolet to terahertz. To date, detailed work on identifying the origin of photoresponse in graphene is still ongoing. Here, scanning photocurrent microscopy to explore the nature of photocurrent generated at the monolayer-multilayer graphene junction is employed. It is found that the contributing photocurrent mechanism relies on the mismatch of the Dirac points between the monolayer and multilayer graphene. For overlapping Dirac points, only photothermoelectric effect (PTE) is observed at the junction. When they do not coincide, a different photocurrent due to photovoltaic effect (PVE) appears and becomes more pronounced with larger separation of the Dirac points. While only PTE is reported for a monolayer-bilayer graphene junction in the literature, this work confirms the coexistence of PTE and PVE, thereby extending the understanding of photocurrent in graphene-based heterojunctions.