▎ 摘 要
The unique characteristics of graphene have generated a lot of interest in the research community. A concept of utilizing graphene and its derivatives in the development of energy harvesters has just appeared in recent decades. This paper focuses on the application of reduced graphene oxide (rGO), a graphene derivative, in the development of wearable mechanical energy-harvesters to enable self-powered wearable sensing systems. Harvesting of energy has been a state-of-the-art phenomenon due to the ever-increasing requirement of power to run the sensing systems. Flexible systems that used rGO to gather energy with intensities ranging from a few microwatts to a few hundreds of microwatts have been used. Some examples are presented, focusing on the class of piezoelectric and triboelectric-based energy harvesters, with descriptions of their material composition, manufacturing methods, operating principle, and performance. Finally, the challenges and drawbacks of rGO-based energy harvesters are discussed, along with some of the potential solutions.