• 文献标题:   Continuous flow fabrication of green graphene oxide in aqueous hydrogen peroxide
  • 文献类型:   Article
  • 作  者:   VIMALANATHAN K, SCOTT J, PAN X, LUO X, RAHPEIMA S, SUN Q, ZOU J, BANSAL N, PRABAWATI E, ZHANG W, DARWISH N, ANDERSSON MR, LI Q, RASTON CL
  • 作者关键词:  
  • 出版物名称:   NANOSCALE ADVANCES
  • ISSN:   2516-0230
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1039/d2na00310d EA MAY 2022
  • 出版年:   2022

▎ 摘  要

Highly processible graphene oxide (GO) has a diversity of applications as a material readily dispersed in aqueous media. However, methods for preparing such free-standing GO use hazardous and toxic reagents and generate significant waste streams. This is an impediment for uptake of GO in any application, for developing sustainable technologies and industries, and overcoming this remains a major challenge. We have developed a robust scalable continuous flow method for fabricating GO directly from graphite in 30% aqueous hydrogen peroxide which dramatically minimises the generation of waste. The process features the continuous flow thin film microfluidic vortex fluidic device (VFD), operating at specific conditions while irradiated sequentially by UV LED than a NIR pulsed laser. The resulting 'green' graphene oxide (gGO) has unique properties, possessing highly oxidized edges with large intact sp(2) domains which gives rise to exceptional electrical and optical properties, including purple to deep blue emission of narrow full width at half maximum (<35 nm). Colloidally stable gGO exhibits cytotoxicity owing to the oxidised surface groups while solid-state films of gGO are biocompatible. The continuous flow method of generating gGO also provides unprecedented control of the level of oxidation and its location in the exfoliated graphene sheets by harnessing the high shear topological fluid flows in the liquid, and varying the wavelength, power and pulse frequency of the light source.