▎ 摘 要
Encapsulation of metal oxide anode material with hierarchical structure in graphene-like high conductivity carbon network is conducive to improving the lithium storage performance of the anode material. However, it is very challenging to rational synthesizing anode materials with such structure. Herein, a mesoporous spiny coral-like CoMoO4 (SCL-CMO) self-assembled from the mesoporous nanorods made of nanoparticles is prepared by a simple one-step solvothermal method. The layered coral-like CoMoO4@N-doped Carbon (LCL-CMO@NC) composite is synthesized by polymerization of DA on the surface of SCL-CMO at room temperature and the subsequent sintering treatment. This LCL-CMO@NC composite perfectly combines the comprehensive advantages of the spiny coral-like hierarchical architecture and the N-doped graphene-like carbon coating, which not only effectively improve the electron and Li+ ion transport dynamics and accommodate the large volume changes, but also prevent hierarchical structure aggregation and pulverization during cycle process. Therefore, LCL-CMO@NC composite exhibits superior electrochemical kinetics and stability. The reversible specific capacity remained 1321.6 and 132 mA h g(-1) after 900 and 10,000 cycles at 0.4 and 5 A g(-1), respectively. (C) 2020 Elsevier Inc. All rights reserved.