▎ 摘 要
Recent research progress shows that graphene exhibits distinct adhesion and friction behaviors. In the paper, the static and dynamic analyses of a diamond tip sliding on suspended graphene surface are conducted via theoretical and numerical research methods, and the adhesion and friction properties between them are investigated. The analytical expression of interaction potential between a diamond tip and graphene surface is derived based on the interatomic pairwise potential, and then, the lateral and normal interaction forces are calculated. The equilibrium heights and adhesion energy of the diamond tip are calculated on three particular sites of graphene surface. The influence of vertical distance between the tip and graphene surface is studied on the maximum static frictional force and initial velocity of tip. What is more, the influence of scanning velocity and damping are also analyzed on the frictional force and dynamic behaviors of the scanning tip, and the "stick-slip" phenomenon is observed and discussed by the numerical calculation. Published by AIP Publishing.