▎ 摘 要
We studied the synthesis of composite Cu/graphene nanoparticles using the radiative characteristics of copper-containing plasma jets of a helium/hydrocarbon mixture, flowing from the nozzle of the output copper electrode of a DC plasmatron. A mixture of propane and butane was used as the hydrocarbon source. To determine the conditions for nanoparticle formation during the conversion of hydrocarbons in erosive jets, the concentration of copper was estimated by analyzing the optical emission spectra of Cu I lines observed in the spectrum. We found that the maximum saturation of graphene by copper (0.03 mass %) is reached at the copper concentration in plasma [Cu] 1/4 N-abs asymptotic to 3 x 10(13) cm(-3), which is sufficient to form a chemical bond of copper with sp2 carbon in a nanoparticle.