▎ 摘 要
Numerical calculations based on the recursive Green's function method in the tight-binding approximation are performed to calculate the dimensionless conductance g in disordered graphene nanoribbons with Gaussian scatterers. The influence of the transition from short-to long-ranged disorder on g is studied as well as its effects on the formation of a perfectly conducting channel. We also investigate the dependence of electronic energy on the perfectly conducting channel. We propose and calculate a backscattering estimate in order to establish the connection between the perfectly conducting channel (with g = 1) and the amount of intervalley scattering.