• 文献标题:   Interactions in the 8-orbital model for twisted bilayer graphene
  • 文献类型:   Article
  • 作  者:   CALDERON MJ, BASCONES E
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   CSIC
  • 被引频次:   0
  • DOI:   10.1103/PhysRevB.102.155149
  • 出版年:   2020

▎ 摘  要

We calculate the interactions between the Wannier functions of the 8-orbital model for twisted bilayer graphene (TBG). In this model, two orbitals per valley centered at the AA regions, the AA-p orbitals, account for the most part of the spectral weight of the flats bands. Exchange and assisted-hopping terms between these orbitals are found to be small. Therefore, the low energy properties of TBG will be determined by the density-density interactions. These interactions decay with the distance much faster than in the 2-orbital model, following a 1/r law in the absence of gates. The magnitude of the largest interaction in the model, the onsite term between the flat band orbitals, is controlled by the size of the AA regions and is estimated to be similar to 40 meV. To screen this interaction, the metallic gates have to be placed at a distance less than or similar to 5 nm. For larger distances only the long-range part of the interaction is substantially screened. The model reproduces the band deformation induced by doping found in other approaches within the Hartree approximation. Such deformation reveals the presence of other orbitals in the flat bands and is sensitive to the inclusion of the interactions involving them.