• 文献标题:   In Situ Synthesis of Reduced Graphene Oxide-Reinforced Silicone-Acrylate Resin Composite Films Applied in Erosion Resistance
  • 文献类型:   Article
  • 作  者:   CAO Y, TIAN XY, WANG Y, SUN YY, YU HL, LI DS, LIU YQ
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF NANOMATERIALS
  • ISSN:   1687-4110 EI 1687-4129
  • 通讯作者地址:   North Univ China
  • 被引频次:   1
  • DOI:   10.1155/2015/405087
  • 出版年:   2015

▎ 摘  要

The reduced graphene oxide reinforced silicone-acrylate resin composite films (rGO/SAR composite films) were prepared by in situ synthesis method. The structure of rGO/SAR composite films was characterized by Raman spectrum, atomic force microscope, scanning electron microscopy, and thermogravimetric analyzer. The results showed that the rGO were uniformly dispersed in silicone-acrylate resin matrix. Furthermore, the effect of rGO loading on mechanical properties of composite films was investigated by bulge test. A significant enhancement (ca. 290% and 320%) in Young's modulus and yield stress was obtained by adding the rGO to silicone-acrylate resin. At the same time, the adhesive energy between the composite films and metal substrate was also improved to be about 200%. Moreover, the erosion resistance of the composite films was also investigated as function of rGO loading. The rGO had great effect on the erosion resistance of the composite films, in which the R-corr (ca. 0.8 mm/year) of composite film was far lower than that (28.7 mm/year) of pure silicone-acrylate resin film. Thus, this approach provides a novel route to investigate mechanical stability of polymer composite films and improve erosion resistance of polymer coating, which are very important to be used in mechanical-corrosion coupling environments.