▎ 摘 要
The results of investigations of the structures and properties of multilayer graphene nano-clusters (nanographites), structural blocks of activated carbon fibers, and their changes under the influence of adsorbed molecules are presented. The presence of specific edge p-electron-ic states in the nanographites and a reversible decrease in their density at the Fermi level upon the interaction of the graphite nanoparticles with adsorbed molecules of oxygen, chlorine, and water were found. The explanation of the discovered effect was proposed in the terms of the model of spin splitting of edge p-electronic states initiated by the transfer of a small fraction of the electron density from the nanographites to adsorbed molecules. The change in the sign of the temperature coefficient of current carrier spin relaxation rate in the presence of adsorbates can be accounted for by their interaction with edge spin-split (magnetically ordered) states. The preservation of peripheral p-electronic states of the nanographites of free (dangling) s-orbitals of edge carbon atoms at saturation with chlorine was substantiated.