▎ 摘 要
Near-infrared perfect wave harvesting of graphene is theoretically and numerically obtained in a hybrid dielectric configuration without assistance of a reflecting mirror. The absorption is increased 43-fold compared to a suspended graphene layer at normal incidence. The mechanism of perfect absorption is based on critical coupling with a guided resonance introduced by a silicon bar array and Fabry-Perot (FP) effect of a silicon oxide layer. This lossless design is expected to find applications to allow the active area with effective generation and fast transport of photocarriers, paving a new way for on-chip small-footprint ultrahigh responsivity and ultrahigh-speed photodetection in silicon photonics.