• 文献标题:   Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by a cyclic atomic layer reduction technique
  • 文献类型:   Article
  • 作  者:   GU SY, HSIEH CT, LIN TW, CHANG JK, LI JL, GANDOMI YA
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Yuan Ze Univ
  • 被引频次:   2
  • DOI:   10.1016/j.carbon.2018.05.024
  • 出版年:   2018

▎ 摘  要

The present work develops an atomic layer reduction (ALR) method to accurately tune oxidation level, electrical conductance, band-gap structure, and photoluminescence (PL) response of graphene oxide (GO) sheets. The ALR route is carried out at 200 degrees C within ALR cycle number of 10-100. The ALR treatment is capable of striping surface functionalities (e.g., hydroxyl, carbonyl, and carboxylic groups), producing thermally-reduced GO sheets. The ALR cycle number serves as a controlling factor in adjusting the crystalline, surface chemistry, electrical, optical properties of GO sheets. With increasing the ALR cycle number, ALR-GO sheets display a high crystallinity, a low oxidation level, an improved electrical conductivity, a narrow band gap, and a tunable PL response. On the basis of the results, the ALR technique offers a great potential for accurately tune electrical and optical properties of carbon materials through the cyclic removal of oxygen functionalities, without any complicated thermal and chemical desorption processes. (c) 2018 Elsevier Ltd. All rights reserved.