• 文献标题:   Construction of Z-Scheme g-C3N4/RGO/WO3 with in situ photoreduced graphene oxide as electron mediator for efficient photocatalytic degradation of ciprofloxacin
  • 文献类型:   Article
  • 作  者:   LU N, WANG P, SU Y, YU HT, LIU N, QUAN X
  • 作者关键词:   photocatalysi, zscheme, electron mediator, gc3n4/rgo/wo3, ciprofloxacin
  • 出版物名称:   CHEMOSPHERE
  • ISSN:   0045-6535 EI 1879-1298
  • 通讯作者地址:   Dalian Univ Technol
  • 被引频次:   38
  • DOI:   10.1016/j.chemosphere.2018.10.065
  • 出版年:   2019

▎ 摘  要

Z-scheme photocatalyst g-C3N4/RGO/WO3 with reduced graphene oxide (RGO) as the electron mediator was synthesized via a facile photoreduction method. According the results of photoluminescence (PL), electrochemical impedance spectroscopy (EIS) and photocurrent response, g-C3N4/RGO/WO3 presents more efficient separation of charges and enhanced electronic mobility than g-C3N4/WO3, g-C3N4 and WO3, which benefits from the excellent electron transfer property of RGO. Reactive species trapping experiments and electron paramagnetic resonance (EPR) test demonstrated that superoxide radical (center dot O-2(-) ) and hydroxyl radical (center dot OH) were produced because of the high redox capacities caused by the unique transfer behaviors of charges in Z-scheme photocatalyst g-C3N4/RGO/WO3. In the absence of RGO as electron mediator, only holes (h(+)) participates the degradation process of ciprofloxacin (CIP) due to the decreased redox capacities of g-C3N4/WO3 compared with g-C3N4/RGO/WO3. Therefore, the degradation rate of Ciprofloxacin (CIP) over g-C3N4/RGO/WO3 composite was nearly twice as much as that over gC(3)N(4)/WO3. In addition, the analysis of intermediates provides insight into the degradation pathway of CIP. (C) 2018 Elsevier Ltd. All rights reserved.