• 文献标题:   Engineering Graphene Grain Boundaries for Plasmonic Multi-Excitation and Hotspots
  • 文献类型:   Article
  • 作  者:   MA T, YAO BC, ZHENG ZB, LIU ZB, MA W, CHEN ML, CHEN HJ, DENG SZ, XU NS, BAO QL, SUN DM, CHENG HM, REN WC
  • 作者关键词:   graphene, chemical vapor deposition, grain boundary, plasmonic, coexcitation, hotspot
  • 出版物名称:   ACS NANO
  • ISSN:   1936-0851 EI 1936-086X
  • 通讯作者地址:  
  • 被引频次:   4
  • DOI:   10.1021/acsnano.2c00396 EA JUN 2022
  • 出版年:   2022

▎ 摘  要

Surface plasmons, merging photonics and electronics in nanoscale dimensions, have been the cornerstones in integrated informatics, precision detection, high-resolution imaging, and energy conversion. Arising from the exceptional Fermi-Dirac tunability, ultrafast carrier mobility, and high-field confinement, graphene offers excellent advantages for plasmon technologies and enables a variety of state-of-theart optoelectronic applications ranging from tight-field-enhanced light sources, modulators, and photodetectors to biochemical sensors. However, it is challenging to co-excite multiple graphene plasmons on one single graphene sheet with high density, a key step toward plasmonic wavelength-division multiplexing and next-generation dynamical optoelectronics. Here, we report the heteroepitaxial growth of a polycrystalline graphene monolayer with patterned gradient grain boundary density, which is synthesized by creating diverse nanosized local growth environments on a centimeter-scale substrate with a polycrystalline graphene ring seed in chemical vapor deposition. Such geometry enables plasmonic co-excitation with varied wavelength diversification in the nanoscale. Via using high-resolution scanning near-field optical microscopy, we demonstrate rich plasmon standing waves, even bright plasmonic hotspots with a size up to 3 mu m. Moreover, by changing the grain boundary density and annealing, we find the local plasmonic wavelengths are widely tunable, from 70 to 300 nm. Theoretical modeling supports that such plasmonic versatility is due to the grain boundary-induced plasmon-phonon interactions through random phase approximation. The seed-induced heteroepitaxial growth provides a promising way for the grain boundary engineering of two-dimensional materials, and the controllable grain boundary-based plasmon co-generation and manipulation in one single graphene monolayer will facilitate the applications of graphene for plasmonics and nanophotonics.