• 文献标题:   Realization of Efficient Field Emitter Based on Reduced Graphene Oxide-Bi2S3 Heterostructures
  • 文献类型:   Article
  • 作  者:   GOTE GH, BHOPALE SR, MORE MA, LATE DJ
  • 作者关键词:   bi2s3, field emission, heterostructure, nanorod, reduced graphene oxide
  • 出版物名称:   PHYSICA STATUS SOLIDI AAPPLICATIONS MATERIALS SCIENCE
  • ISSN:   1862-6300 EI 1862-6319
  • 通讯作者地址:   Savitribai Phule Pune Univ
  • 被引频次:   6
  • DOI:   10.1002/pssa.201900121 EA JUL 2019
  • 出版年:   2019

▎ 摘  要

Herein, Bi2S3 nanorods and reduced graphene oxide (rGO)-Bi2S3 heterostructures are synthesized using a simple hydrothermal method. The structural, morphological, chemical, and elemental analysis of as-synthesized materials is performed using X-ray diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Field emission (FE) studies are carried out on both pristine Bi2S3 nanorods and rGO-Bi2S3 heterostructure samples at a base pressure of approximate to 1 x 10(-8) mbar. The results show that the rGO-Bi2S3 heterostructure emitter has superior FE performance compared to pristine Bi2S3 emitters in terms of the turn-on field (2.6 V mu m(-1) at 10 mu A cm(-2)) and threshold field (4.0 V mu m(-1) at 100 mu A cm(-2)) along with a high emission current density of approximate to 1464 mu A cm(-2) at an applied electric field of 7.0 V mu m(-1). The rGO-Bi2S3 heterostructure emitter exhibits very good emission current stability, tested for more than 3 h duration, characterized by standard deviation values approximate to 2.84 and 4.06, corresponding to preset values 12 and 100 mu A. This study implies that one-step hydrothermal route can be efficiently used to synthesize organic-inorganic heterostructures that possess unique morphology. Furthermore, the synthesized rGO-Bi2S3 heterostructure emitter shows potential as an electron source for practical application in vacuum microelectronic devices.