• 文献标题:   Preparation and characterization of amidated graphene oxide and its effect on the performance of poly(lactic acid)
  • 文献类型:   Article
  • 作  者:   ZHENG L, ZHEN WJ
  • 作者关键词:   poly lactic acid, graphene oxide, amidated graphene oxide, nanocomposite, performance
  • 出版物名称:   IRANIAN POLYMER JOURNAL
  • ISSN:   1026-1265 EI 1735-5265
  • 通讯作者地址:   Xinjiang Univ
  • 被引频次:   6
  • DOI:   10.1007/s13726-018-0604-y
  • 出版年:   2018

▎ 摘  要

An improved Hummers method was used to prepare graphene oxide (GO). Then, the orthogonal experiment design methods were used to select the optimum conditions of the preparation for amidated graphene oxide (AGO) via amidation. The optimum scheme was followed by: reaction temperature 70 degrees C, reaction time 5 h and GO: benzohydrazide of 1: 3 (g:g). The structure of AGO was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscope (TEM) techniques, which demonstrated that the amidation of GO was successful. Furthermore, poly(lactic acid) (PLA)/AGO nanocomposites were prepared by melt blending to improve the comprehensive performance of PLA. Mechanical properties, thermal stabilities, crystallization properties, and rheological behavior of PLA/AGO nanocomposites were investigated, which showed that the addition of 0.3 wt % of AGO increased the tensile strength, elongation-at-break, and impact strength of PLA/AGO nanocomposites by 7.68, 47.32 and 41.27%, respectively, compared with neat PLA. Scanning electron microscopy analysis showed ductile fracture of the PLA/AGO nanocomposites. TEM analysis showed that nano-AGO single layers were evenly dispersed in the PLA matrix, confirming the formation of an exfoliated nanocomposite structure. Differential scanning calorimetry demonstrated that AGO eliminated the cold crystallization of PLA matrix and improved the crystallinity of PLA by 34.1%. In all, this study provided an effective and feasible method for improving the comprehensive performance of PLA.