▎ 摘 要
The twisted nematic liquid crystal cell was developed by using a CYTOP-transferred graphene sheet as an electrode and an alignment layer. A graphene layer was synthesized by chemical vapor deposition and transferred onto a plastic substrate using a fluoropolymer known as CYTOP. As the ion-beam treatment time increased, the sheet resistance increased from 500 to 1100 Omega/sq., while the water contact angle decreased from 110.5A degrees to 69.7A degrees. The increased intensities of the D and G' bands and the appearance of D + DaEuro(3) and D + G' bands in the Raman spectra indicated the formation of defects because of the ion-beam treatment. An ion-beam exposure time of 15 s was found to be the most effective for the production of CYTOP-transferred graphene and for achieving high contrast in operating cells. The ion beam detached F from the CYTOP-transferred graphene layer, and the resulting exposure of the C=C bond on the graphene surface affected the alignment of liquid crystal molecules. Based on these results, the technique described here has applications in novel, high-performance liquid crystal displays that do not require indium-tin-oxide electrodes and polyimide alignment layers. Sheets synthesized by chemical vapor deposition were transferred and simultaneously doped using fluoropolymer supporting layers.