• 文献标题:   Quantum blockade and loop current induced by a single lattice defect in graphene nanoribbons
  • 文献类型:   Article
  • 作  者:   YAN JY, ZHANG P, SUN B, LU HZ, WANG ZG, DUAN SQ, ZHAO XG
  • 作者关键词:   adsorbed layer, band structure, fermi level, graphene, tightbinding calculation
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   1098-0121 EI 1550-235X
  • 通讯作者地址:   Inst Appl Phys Computat Math
  • 被引频次:   40
  • DOI:   10.1103/PhysRevB.79.115403
  • 出版年:   2009

▎ 摘  要

We investigate theoretically the electronic transport properties in narrow graphene ribbons with an adatom-induced defect. It is found that the lowest conductance step of a metallic graphene nanoribbon may develop a dip even down to zero at certain values of the Fermi energy due to the defect. Accompanying the occurrence of the conductance dip, a loop current develops around the defect. We show how the properties of the conductance dip depend on the parameters of the defect such as the relative position and severity of the defect as well as the width and edges of the graphene ribbons. In particular, for metallic armchair-edges graphene nanoribbons, whether the conductance dip appears or not, they can be controlled by choosing the position of the single defect.