• 文献标题:   Simultaneously improved mechanical and thermal properties of Mg-Zn-Zr alloy reinforced by ultra-low content of graphene nanoplatelets
  • 文献类型:   Article
  • 作  者:   DU X, DU WB, WANG ZH, LIU K, LI SB
  • 作者关键词:   graphene, magnesium, interface, mechanical property, impact toughnes, thermal conductivity
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:  
  • 被引频次:   16
  • DOI:   10.1016/j.apsusc.2020.147791
  • 出版年:   2021

▎ 摘  要

Mg-Zn-Zr (ZK60) alloys reinforced by ultra-low content (< 0.1 wt%) of graphene nanoplatelets (GNPs) were fabricated via stirring cast and extrusion processes. In composites, GNPs thoroughly dispersed and continuously combined with Mg matrix at the interface, beneficial for the load and heat transfer of composites. The static and dynamic mechanical properties of GNP/ZK60 composite were investigated and respectively compared with those of ZK60 alloy. With only 0.04 wt% addition, GNP nanofillers improved the impact toughness twice that of ZK60 matrix up to 17 J cm(-2). In tensile test, GNP(0.04)/ZK60 composite performed enhanced tensile yield strength of 256 MPa, improved by 62% than ZK60 alloy. Although grain boundary is commonly considered as defect to deteriorate transport property, GNP(0.04)/ZK60 composite with largely refined grain size conducted superior thermal conductivity of 139.4 W.(mK)(-1) than ZK60 alloy (132.2 W.(mK)(-1)) at room temperature. The dispersed GNPs in matrix provide beneficial networks for efficient load and heat transfer. This work explores that graphene reinforcement is an effective way to simultaneously improve the mechanical and thermal properties of Mg alloys for enlarged applications.