• 文献标题:   Multifunctional brominated graphene oxide boosted charge extraction for high-efficiency and stable all-inorganic CsPbBr3 perovskite solar cells
  • 文献类型:   Article
  • 作  者:   SUN XM, HE BL, ZHU JW, ZHU R, CHEN HY, DUAN YY, TANG QW
  • 作者关键词:   allinorganic perovskite solar cell, additive interface engineering, brominated graphene oxide, highquality perovskite film, charge extraction
  • 出版物名称:   CHEMICAL ENGINEERING JOURNAL
  • ISSN:   1385-8947 EI 1873-3212
  • 通讯作者地址:  
  • 被引频次:   22
  • DOI:   10.1016/j.cej.2021.128727 EA FEB 2021
  • 出版年:   2021

▎ 摘  要

The perovskite film with large grain size and high charge mobility is critical for the improvement of the power conversion efficiency (PCE) and the operational stability of perovskite solar cells (PSCs). Herein, multifunctional brominated graphene oxide (Br-GO) is prepared and innovatively used as an effective additive to incorporate into CsPbBr3 to form a large-grained high-quality perovskite film and to passivate defects at grain boundaries, which remarkably reduces the trap state density and carrier non-radiative recombination. Meanwhile, the hole mobility of the homogeneous CsPbBr3 + Br-GO photoactive layer is obviously increased due to the hole acceptor properties and high carrier mobility of Br-GO, resulting in an enhanced charge separation as well as transfer and suppressed carrier radiative recombination. Moreover, the Br-GO with a downshift valence band is employed as a hole-transporting material setting at perovskite/Carbon interface to further compensate energy levels and promote hole extraction. As a consequence, a champion PCE of 10.10% with an open-circuit voltage up to 1.602 V for the optimized PSCs with a configuration of FTO/c-TiO2/m-TiO2/CsPbBr3 + Br-GO/Br-GO/Carbon is obtained, which is much higher than 6.28% efficiency for the reference device. The unencapsulated solar cells also exhibit a remarkable tolerance toward 85% RH and long-term AM 1.5G illumination in air.