▎ 摘 要
Friction properties in the electric field are important for the application of graphene as a solid lubricant in graphene-based micro/ nanoelectromechanical systems. The studies based on conductive atomic force microscopy show that interfacial water between graphene and the SiO2/Si substrate affects the friction of graphene in the electric field. Friction without applying voltage remains low because the interfacial water retains a stable ice-like network. However, friction after applying voltage increases because the polar water molecules are attracted by the electric field and gather around the tip. The gathered interfacial water not only increases the deformation of graphene but is also pushed by the tip during frictional sliding, which results in the increased friction. These studies provide beneficial guidelines for the applications of graphene as a solid lubricant in the electric field.