• 文献标题:   Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells
  • 文献类型:   Article
  • 作  者:   KUMAR R, DA SILVA ETSG, SINGH RK, SAVU R, ALAFERDOV AV, FONSECA LC, CAROSSI LC, SINGH A, KHANDKA S, KAR KK, ALVES OL, KUBOTA LT, MOSHKALEV SA
  • 作者关键词:   ndoped reduced graphene oxide, palladiun nanoparticle, intercalated, microwave, directethanol fuel cell
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:   Univ Campinas UNICAMP
  • 被引频次:   20
  • DOI:   10.1016/j.jcis.2018.01.028
  • 出版年:   2018

▎ 摘  要

Palladium nanoparticles decorated reduced graphene oxide (Pd-rGO) and palladium nanoparticles intercalated inside nitrogen doped reduced graphene oxide (Pd-NrGO) hybrids have been synthesized by applying a very simple, fast and economic route using microwave-assisted in-situ reduction and exfoliation method. The Pd-NrGO hybrids materials show good activity as catalyst for ethanol electro oxidation for direct ethanol fuel cells (DEFCs) as compared to Pd-rGO hybrids. The enhanced direct ethanol fuel cell can serve as alternative to fossil fuels because it is renewable and environmentally-friendly with a high energy conversion efficiency and low pollutant emission. As proof of concept, the electrocatalytic activity of Pd-NrGO hybrid material was accessed by cyclic voltammetry in presence of ethanol to evaluate its applicability in direct-ethanol fuel cells (DEFCs). The Pd-NrGO catalyst presented higher electro active surface area (similar to 6.3 m(2) g(-1)) for ethanol electro-oxidation when compared to Pd-rGO hybrids (similar to 3.7 m(2) g(-1)). Despite the smaller catalytic activity of Pd-NrGO, which was attributed to the lower exfoliation rate of this material in relation to the Pd-rGO, Pd-NrGO showed to be very promising and its catalytic activity can be further improved by tuning the synthesis parameters to increase the exfoliation rate. (C) 2018 Elsevier Inc. All rights reserved.