• 文献标题:   Enhanced plasmonic photocatalytic performance of C3N4/Cu by the introduction of a reduced graphene oxide interlayer
  • 文献类型:   Article
  • 作  者:   GAI QX, REN ST, ZHENG XC, LIU WJ
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076 EI 1463-9084
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1039/d3cp01118f EA APR 2023
  • 出版年:   2023

▎ 摘  要

Cu nanoparticles (NPs) are low-cost surface plasmonic resonance (SPR) metal nanostructures, and their SPR properties can be used to enhance the photocatalytic hydrogen evolution performance of carbon nitride (C3N4). But their actual performance is usually limited, and one key factor is their poor interfacial quality. In this work, a highly conductive reduced graphene oxide (RGO) interlayer is introduced between protonated C3N4 (PCN) nanosheets and Cu NPs, which can act as an efficient sink for photogenerated electrons from C3N4 and hot electrons from Cu NPs, and simultaneously serve as reaction sites for the hydrogen evolution reaction, and accelerate the charge transport by the formed C-O-C and C-O-Cu bonds. The optimal hydrogen evolution rate of the optimized PCN/RGO/Cu is 1.30 mmol g(-1) h(-1), which is 6.76, 2.47 and 2.41 times that of PCN, PCN/RGO and PCN/Cu, respectively, and it can further reach up to 13.22 mmol g(-1) h(-1) by loading moderate Pt NPs. Meanwhile, the introduced RGO can effectively anchor Cu NPs to enhance the stability of the photocatalyst. In addition, due to the broad SPR response of Cu NPs, a near-infrared photocatalytic performance is realized for PCN/RGO/Cu with an apparent quantum efficiency of 0.46% at 765 nm.