▎ 摘 要
This paper proposed an effective stochastic finite element method for the study of randomly distributed vacancy defects in graphene sheets. The honeycomb lattice of graphene is represented by beam finite elements. The simulation results of the pristine graphene are in accordance with literatures. The randomly dispersed vacancies are propagated and performed in graphene by integrating Monte Carlo simulation (MCS) with the beam finite element model (FEM). The results present that the natural frequencies of different vibration modes decrease with the augment of the vacancy defect amount. When the vacancy defect reaches 5%, the regularity and geometrical symmetry of displacement and rotation in vibration behavior are obviously damaged. In addition, with the raise of vacancy defects, the random dispersion position of vacancy defects increases the variance in natural frequencies. The probability density distributions of natural frequencies are close to the Gaussian and Weibull distributions.