• 文献标题:   The homojunction formed by h-In2O3(110) and c-In2O3(440) promotes carbon dioxide hydrogenation to methanol on graphene oxide modified In2O3
  • 文献类型:   Article
  • 作  者:   SHI YC, SU WG, KONG L, WANG JF, LV P, HAO J, GAO XH, YU GS
  • 作者关键词:   homojunction, indium oxide, graphene oxide, oxygen vacancie, carbon dioxide hydrogenation to methanol
  • 出版物名称:   JOURNAL OF COLLOID INTERFACE SCIENCE
  • ISSN:   0021-9797 EI 1095-7103
  • 通讯作者地址:  
  • 被引频次:   4
  • DOI:   10.1016/j.jcis.2022.05.089 EA JUN 2022
  • 出版年:   2022

▎ 摘  要

The graphene oxide (GO) modified In2O3 composite catalyst was applied for CO2 hydrogenation to methanol. The GO significantly promoted the formation of hexagonal In2O3 (h-In2O3) and inhibited the deep reduction of h-In2O3 to element In. The homojunction formed by h-In2O3(1 1 0) and c-In2O3(4 4 0) strengthened the interaction between the two phases, motivated the reduction of surface In2O3 and facilitated the generation of oxygen vacancies, which was greatly beneficial to the formation of methanol. DFT manifested that the formation energy of oxygen vacancies on c-In2O3(4 4 0)/h-In2O3(1 1 0) homojunction was lower than that of single h-In2O3 or c-In2O3, indicating that more oxygen vacancies were easier to be generated at the two phases interface. For rod In2O3 catalysts modified by different GO content, when the GO content reached 8%, the space-time yield (STY) of methanol could be as high as 0.93 gMeOHh-1gcat-1, and the methanol selectivity could still reach more than 76% with CO2 conversion of 10.4%.(c) 2022 Elsevier Inc. All rights reserved.