• 文献标题:   Fe3O4-Decorated Porous Graphene Interlayer for High-Performance Lithium-Sulfur Batteries
  • 文献类型:   Article
  • 作  者:   LIU YM, QIN XY, ZHANG SQ, LIANG GM, KANG FY, CHEN GH, LI BH
  • 作者关键词:   fe3o4 nanoparticle, porous graphene, interlayer, multifunctional, lithiumsulfur batterie
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Tsinghua Univ
  • 被引频次:   28
  • DOI:   10.1021/acsami.8b07316
  • 出版年:   2018

▎ 摘  要

Lithium-sulfur (Li-S) batteries are seriously restrained by the shuttling effect of intermediary products and their further reduction on the anode surface. Considerable researches have been devoted to overcoming these issues by introducing carbon-based materials as the sulfur host or interlayer in the Li-S systems. Herein, we constructed a multifunctional interlayer on a separator by inserting Fe3O4 nanoparticles (NPs) in a porous graphene (PG) film to immobilize polysulfides effectively. The porous structure of graphene was optimized by controlling the oxidation conditions for facilitating ion transfer. The polar Fe3O4 NPs were employed to trap sulfur species via strong chemical interaction. By exploiting the PG-Fe3O4 interlayer with optimal porous structure and component, the Li-S battery delivered a superior cycling performance and rate capability. The reversible discharge capacity could be maintained at 732 mAh g(-1) after 500 cycles and 356 mAh g(-1) after total 2000 cycles at 1 C with a final capacity retention of 49%. Moreover, a capacity of 589 mAh g(-1) could also be maintained even at 2 C rate.