• 文献标题:   Poly(N,N-diethyl acrylamide)/functionalized graphene quantum dots hydrogels loaded with doxorubicin as a nano-drug carrier for metastatic lung cancer in mice
  • 文献类型:   Article
  • 作  者:   HAVANUR S, BATISH I, CHERUKU SP, GOURISHETTI K, JAGADEESHBABU PE, KUMAR N
  • 作者关键词:   doxorubicin, drug carrier, graphene quantum dot, melanoma, nanohydrogel, poly n ndiethyl acrylamide
  • 出版物名称:   MATERIALS SCIENCE ENGINEERING CMATERIALS FOR BIOLOGICAL APPLICATIONS
  • ISSN:   0928-4931 EI 1873-0191
  • 通讯作者地址:   Natl Inst Technol Karnataka
  • 被引频次:   6
  • DOI:   10.1016/j.msec.2019.110094
  • 出版年:   2019

▎ 摘  要

Cancer has emanated as a daunting menace to human-kind even though medicine, science, and technology has reached its zenith. Subsequent scarcity in the revelation of new drugs, the exigency of salvaging formerly discovered toxic drugs such as doxorubicin has emerged. The invention of drug carrier has made drug delivery imminent which is ascribable to its characteristic traits of specific targeting, effective response to stimuli and biocompatibility. In this paper, the nanoscale polymeric drug carrier poly(N,N-diethyl acrylamide) nanohydrogel has been synthesized by inverse emulsion polymerization. Lower critical solution temperature of the polymeric carrier has been modified using graphene quantum. The particle size of pure nanohydrogel was in the range of 47 to 59.5 nm, and graphene quantum dots incorporated nanohydrogels was in the range of 68.1 to 87.5 nm. Doxorubicin (hydroxyl derivative of anthracycline) release behavior as a function of time and temperature was analyzed, and the Lower critical solution temperature of the synthesized nanohydrogels has been found to be in the range of 28-42 degrees C. Doxorubicin release characteristics have improved significantly as the surrounding temperature of the release media was increased near to physiological temperature. Further, the cumulative release profile was fitted in the different kinetic model and found to follow a Fickian diffusion release mechanism. The hydrogel was assessed for its cytotoxicity in B16F10 cells by MTT assay. In-vivo studies were done to study the lung metastasis by melanoma cancer and the results showed a rational favorable prognosis which was confirmed by evaluating hematological parameters and the non-immunogenic nature of nanohydrogel by cytokine assay. Comprehensively, the results suggested that poly(N,N-diethyl acrylamide) nanohydrogels have potential application as an intelligent drug carrier for melanoma cancer.